Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Microbes Infect ; 26(1-2): 105230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37734535

RESUMO

The Candida albicans population displays high genetic diversity illustrated by 18-well differentiated genetic clusters. Cluster 13, also known as Candida africana, is an outlying cluster and includes strains first described as atypical C. albicans isolates of vaginal origin, showing apparent tropism for the female genital tract. In our study, we combined in vitro, and in vivo models to explore the colonization and pathogenic potential of C. africana. We report that C. africana has similar fitness to C. albicans when it comes to colonization of the oral and vaginal mucosa, however it has decreased fitness in gastro-intestinal colonization and systemic infection. Interestingly, despite high population homogeneity, our in vitro data highlighted for the first time a variability in terms of growth rate, biofilm formation and filamentation properties between C. africana strains. Overall, our data lays the foundations for exploring specific features of C. africana that might contribute to its apparent niche restriction.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Candidíase Vulvovaginal/epidemiologia , Antifúngicos , Candida/genética , Candida albicans/genética
2.
Sci Transl Med ; 15(725): eadi3363, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055800

RESUMO

Candida causes an estimated half-billion cases of vulvovaginal candidiasis (VVC) every year. VVC is most commonly caused by Candida albicans, which, in this setting, triggers nonprotective neutrophil infiltration, aggressive local inflammation, and symptomatic disease. Despite its prevalence, little is known about the molecular mechanisms underpinning the immunopathology of this fungal infection. In this study, we describe the molecular determinant of VVC immunopathology and a potentially straightforward way to prevent disease. In response to zinc limitation, C. albicans releases a trace mineral binding molecule called Pra1 (pH-regulated antigen). Here, we show that the PRA1 gene is strongly up-regulated during vaginal infections and that its expression positively correlated with proinflammatory cytokine concentrations in women. Genetic deletion of PRA1 prevented vaginal inflammation in mice, and application of a zinc solution down-regulated expression of the gene and also blocked immunopathology. We also show that treatment of women suffering from recurrent VVC with a zinc gel prevented reinfections. We have therefore identified a key mediator of symptomatic VVC, giving us an opportunity to develop a range of preventative measures for combatting this disease.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Animais , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/prevenção & controle , Zinco/farmacologia , Zinco/metabolismo , Vagina , Candida albicans , Inflamação/patologia
3.
Microorganisms ; 11(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375053

RESUMO

Vaginal ecosystem is a unique environment where, in physiological conditions, lactobacilli dominate. However, pathogenic microbial species responsible for vaginitis and vaginosis can also harbor vaginal microbiota. To extend our previously published data, we analyzed here both the anti-Candida and anti-inflammatory properties of the vaginal gel formulation, Respecta® Balance Gel (RBG), commercialized as an adjuvant to treat vaginitis and vaginosis. We evaluated its activity by an in vitro model where a monolayer of A-431 vaginal epithelial cells was infected by Candida albicans in the presence of RBG or the placebo formulation (pRBG). Specifically, we tested the RBG capacity to counteract C. albicans virulence factors and their anti-inflammatory properties. Our results show that, unlike the placebo, RBG reduces C. albicans adhesion, its capacity to form hyphae and C. albicans-induced vaginal cell damage. Interestingly, both RBG and pRBG reduce LPS-induced IL-8 secretion (with RBG being the most effective), demonstrating that also the placebo retains anti-inflammatory properties. From our experimental approach, we highlighted the possible role of farnesol on such effects, but we would like to point out that lactic acid, polydextrose and glycogen too must be relevant in the actual application. In summary, our results show that RBG impairs C. albicans virulence and is able to reduce the inflammation in the vaginal environment, ultimately allowing the establishment of a balanced vaginal ecosystem.

4.
mBio ; 14(2): e0010723, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36856418

RESUMO

Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Candidíase Vulvovaginal/microbiologia , Candida/genética , Tipagem de Sequências Multilocus , Qualidade de Vida , Candida albicans , Antifúngicos/farmacologia , Fenótipo , Comunicação Celular
5.
PLoS One ; 18(2): e0282059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812218

RESUMO

In industrialized countries, health care associated infections, the fourth leading cause of disease, are a major health issue. At least half of all cases of nosocomial infections are associated with medical devices. Antibacterial coatings arise as an important approach to restrict the nosocomial infection rate without side effects and the development of antibiotic resistance. Beside nosocomial infections, clot formation affects cardiovascular medical devices and central venous catheters implants. In order to reduce and prevent such infection, we develop a plasma-assisted process for the deposition of nanostructured functional coatings on flat substrates and mini catheters. Silver nanoparticles (Ag NPs) are synthesized exploiting in-flight plasma-droplet reactions and are embedded in an organic coating deposited through hexamethyldisiloxane (HMDSO) plasma assisted polymerization. Coating stability upon liquid immersion and ethylene oxide (EtO) sterilization is assessed through chemical and morphological analysis carried out by means of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In the perspective of future clinical application, an in vitro analysis of anti-biofilm effect has been done. Moreover, we employed a murine model of catheter-associated infection which further highlighted the performance of Ag nanostructured films in counteract biofilm formation. The anti-clot performances coupled by haemo- and cytocompatibility assays have also been performed.


Assuntos
Nanopartículas Metálicas , Prata , Camundongos , Animais , Prata/química , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Biofilmes
6.
Artigo em Inglês | MEDLINE | ID: mdl-36361021

RESUMO

Candida albicans expresses numerous virulence factors that contribute to pathogenesis, including its dimorphic transition and even biofilm formation, through the release of specific quorum sensing molecules, such as the autoinducers (AI) tyrosol and farnesol. In particular, once organized as biofilm, Candida cells can elude conventional antifungal therapies and the host's immune defenses as well. Accordingly, biofilm-associated infections become a major clinical challenge underlining the need of innovative antimicrobial approaches. The aim of this in vitro study was to assess the effects of pomegranate peel extract (PomeGr) on C. albicans growth and biofilm formation; in addition, the release of tyrosol and farnesol was investigated. The phenolic profile of PomeGr was assessed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis before and after exposure to C. albicans. Here, we showed that fungal growth, biofilm formation and AI release were altered by PomeGr treatment. Moreover, the phenolic content of PomeGr was substantially hampered upon exposure to fungal cells; particularly pedunculagin, punicalin, punicalagin, granatin, di-(HHDP-galloyl-hexoside)-pentoside and their isomers as well as ellagic acid-hexoside appeared highly consumed, suggesting their role as bioactive molecules against Candida. Overall, these new insights on the anti-Candida properties of PomeGr and its potential mechanisms of action may represent a relevant step in the design of novel therapeutic approaches against fungal infections.


Assuntos
Farneseno Álcool , Punica granatum , Farneseno Álcool/farmacologia , Biofilmes , Candida albicans , Antifúngicos/farmacologia , Extratos Vegetais/farmacologia
8.
Microbiol Spectr ; 10(3): e0269621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35499353

RESUMO

Vulvovaginal candidiasis (VVC) is a common clinical condition with symptoms and signs of vaginal inflammation in the presence of Candida species. At least one episode of VVC is experienced in up to 75% of women in the reproductive age group during their lifetime, and 5% to 8% of such women suffer from the chronic form. Most cases of VVC are still caused by C. albicans. However, the incidence of VVC cases by non-albicans Candida (NAC) species, such as C. parapsilosis, is continuously increasing. Despite the prevalence of VVC from NAC, little is known about these species and almost nothing about the mechanisms that trigger the VVC. Lactobacillus spp. are the most widely before represented microorganisms in the vaginal microbiota of healthy women. Here, cell-free supernatants (CFS) obtained from L. acidophilus, L. plantarum, L. rhamnosus, and L. reuteri were assessed for their effect on C. parapsilosis virulence traits. Moreover, we assessed if such an effect persisted even after the removal of the CFS (CFS preincubation effect). Moreover, a transwell coculture system was employed by which the relevant antifungal effect was shown to be attributable to the compounds released by lactobacilli. Our results suggest that lactobacilli can work (i) by reducing C. parapsilosis virulence traits, as indicated by the reduced fungal proliferation, viability, and metabolic activity, and (ii) by improving epithelial resistance to the fungus. Overall, these data suggest that, in the context of the vaginal microbiota, the lactobacilli may play a role in preventing the onset of mucosal C. parapsilosis infection. IMPORTANCE The incidence of VVC by non-albicans Candida (NAC) species, such as C. parapsilosis, is increasing. Treatment failure is common in NAC-VVC because some species are resistant or poorly susceptible to the antifungal agents normally employed. Research on C. parapsilosis's pathogenic mechanisms and alternative treatments are still lacking. C. albicans triggers the VVC by producing hyphae, which favor the loss of epithelial tolerance. Differently, C. parapsilosis only produces pseudohyphae. Hence, different virulence factors may trigger the VVC. Likewise, the therapeutic options could also involve different fungal targets. Substantial in vitro and in vivo studies on the pathogenicity mechanisms of C. parapsilosis are lacking. The data presented here ascribe a novel beneficial role to different Lactobacillus spp., whose CFS provides a postbiotic-like activity against C. parapsilosis. Further studies are needed to unravel the mechanisms involved in the bioactivities of such compounds, to better understand the role of single postbiotics in the CFS.


Assuntos
Candidíase Vulvovaginal , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candida albicans , Candida parapsilosis , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/patologia , Técnicas de Cocultura , Células Epiteliais , Feminino , Humanos , Lactobacillus , Lactobacillus acidophilus
9.
Clin Oral Investig ; 26(4): 3613-3625, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066687

RESUMO

OBJECTIVES: To assess the effects of benzydamine and mouthwashes (MoWs) containing benzydamine on different stages of Candida albicans biofilm: adhesion, formation, persistence, and regrowth (if perturbed). MATERIALS AND METHODS: C. albicans CA1398, carrying the bioluminescence ACT1p-gLUC59 fusion product, was employed. Fungal cells were exposed for 1', 5', or 15' to 4 different benzydamine concentrations (0.075 to 0.6%) to 2 mouthwashes (MoWs) containing benzydamine and to a placebo MoW (without benzydamine). Treated cells were tested for adhesion (90 min) and biofilm formation (24-h assay). Next, 24- and 48-h-old biofilms were exposed to benzydamine and MoWs to assess regrowth and persistence, respectively. The effects of benzydamine, MoWs containing benzydamine, and placebo on different biofilm stages were quantified by bioluminescence assay and by the production of quorum sensing (QS) molecules. RESULTS: Benzydamine and MoWs containing benzydamine impaired C. albicans ability to adhere and form biofilm, counteracted C. albicans persistence and regrowth, and impaired a 48-h-old biofilm. Some of these effects paralleled with alterations in QS molecule secretion. CONCLUSIONS: Our results show for the first time that benzydamine and MoWs containing benzydamine impair C. albicans capacity to form biofilm and counteract biofilm persistence and regrowth. CLINICAL RELEVANCE: Benzydamine and MoWs containing benzydamine capacity to affect C. albicans biofilm provides an interesting tool to prevent and treat oral candidiasis. Likely, restraining C. albicans colonization through daily oral hygiene may counteract colonization and persistence by other critical oral pathogens, such as Streptococcus mutans, whose increased virulence has been linked to the presence of C. albicans biofilm.


Assuntos
Benzidamina , Candida albicans , Benzidamina/farmacologia , Biofilmes , Antissépticos Bucais/farmacologia , Streptococcus mutans
10.
Front Microbiol ; 12: 692491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163460

RESUMO

Vulvovaginal candidiasis (VVC) is a symptomatic inflammation of the vagina mainly caused by C. albicans. Other species, such as C. parapsilosis, C. glabrata, C. tropicalis, and C. krusei, are mainly associated to the recurrent form of the disease (RVVC), although with a lower frequency. In its yeast form, C. albicans is tolerated by the vaginal epithelium, but switching to the invasive hyphal form, co-regulated with the expression of genes encoding virulence factors such as secreted aspartyl proteases (Sap) and candidalysin, allows for tissue damage. Vaginal epithelial cells play an important role by impairing C. albicans tissue invasion through several mechanisms such as epithelial shedding, secretion of mucin and strong interepithelial cell connections. However, morphotype switching coupled to increasing of the fungal burden can overcome the tolerance threshold and trigger an intense inflammatory response. Pathological inflammation is believed to be facilitated by an altered vaginal microbiome, i.e., Lactobacillus dysbiosis. Notwithstanding the damage caused by the fungus itself, the host response to the fungus plays an important role in the onset of VVC, exacerbating fungal-mediated damage. This response can be triggered by host PRR-fungal PAMP interaction and other more complex mechanisms (i.e., Sap-mediated NLRP3 activation and candidalysin), ultimately leading to strong neutrophil recruitment. However, recruited neutrophils appear to be ineffective at reducing fungal burden and invasion; therefore, they seem to contribute more to the symptoms associated with vaginitis than to protection against the disease. Recently, two aspects of the vulvovaginal environment have been found to associate with VVC and induce neutrophil anergy in vitro: perinuclear anti-neutrophil cytoplasmic antibodies (pANCA) and heparan sulfate. Interestingly, CAGTA antibodies have also been found with higher frequency in VVC as compared to asymptomatic colonized women. This review highlights and discusses recent advances on understanding the VVC pathogenesis mechanisms as well as the role of host defenses during the disease.

11.
J Fungi (Basel) ; 6(4)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081210

RESUMO

Vulvovaginal candidiasis (VVC) is primarily caused by Candida albicans and affects 75% of childbearing age women. Although C. albicans can colonize asymptomatically, disease is associated with an increased Candida burden, a loss of epithelial tolerance and a breakdown in vaginal microbiota homeostasis. VVC symptoms have been ascribed to a powerful inflammatory response associated with the infiltration of non-protective neutrophils (PMN). Here, we compared the immunological characteristics of vaginal fluids and cellular protein extracts obtained from 28 VVC women and from 23 healthy women colonized by Candida spp. We measured the levels of antibodies against fungal antigens and human autoantigens (anti-Saccharomyces cerevisiae antibodies (ASCA), C. albicans germ tube antibodies (CAGTAs) and perinuclear anti-neutrophil cytoplasmic antibodies (pANCA)), in addition to other immunological markers. Our results show that the pANCA levels detected in the cellular protein extracts from the vaginal fluids of symptomatic women were significantly higher than those obtained from healthy colonized women. Consistent with a potential physiologically relevant role for this pANCA, we found that specific anti-myeloperoxidase antibodies could completely neutralize the ex vivo killing capacity of polymorphonuclear cells. Collectively, this preliminary study suggests for the first time that pANCA are found in the pathogenic vaginal environment and can promptly impair neutrophil function against Candida, potentially preventing a protective response.

12.
Sci Adv ; 6(19): eaaz0295, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494704

RESUMO

Plant viruses are natural, self-assembling nanostructures with versatile and genetically programmable shells, making them useful in diverse applications ranging from the development of new materials to diagnostics and therapeutics. Here, we describe the design and synthesis of plant virus nanoparticles displaying peptides associated with two different autoimmune diseases. Using animal models, we show that the recombinant nanoparticles can prevent autoimmune diabetes and ameliorate rheumatoid arthritis. In both cases, this effect is based on a strictly peptide-related mechanism in which the virus nanoparticle acts both as a peptide scaffold and as an adjuvant, showing an overlapping mechanism of action. This successful preclinical testing could pave the way for the development of plant viruses for the clinical treatment of human autoimmune diseases.


Assuntos
Doenças Autoimunes , Nanopartículas , Nanoestruturas , Vírus de Plantas , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/prevenção & controle , Nanopartículas/química , Nanoestruturas/química , Peptídeos/farmacologia
13.
Front Microbiol ; 11: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117094

RESUMO

Pseudomonas aeruginosa is a Gram-negative nosocomial pathogen, often causative agent of severe device-related infections, given its great capacity to form biofilm. P. aeruginosa finely regulates the expression of numerous virulence factors, including biofilm production, by Quorum Sensing (QS), a cell-to-cell communication mechanism used by many bacteria. Selective inhibition of QS-controlled pathogenicity without affecting bacterial growth may represent a novel promising strategy to overcome the well-known and widespread drug resistance of P. aeruginosa. In this study, we investigated the effects of SM23, a boronic acid derivate specifically designed as ß-lactamase inhibitor, on biofilm formation and virulence factors production by P. aeruginosa. Our results indicated that SM23: (1) inhibited biofilm development and production of several virulence factors, such as pyoverdine, elastase, and pyocyanin, without affecting bacterial growth; (2) decreased the levels of 3-oxo-C12-HSL and C4-HSL, two QS-related autoinducer molecules, in line with a dampened lasR/lasI system; (3) failed to bind to bacterial cells that had been preincubated with P. aeruginosa-conditioned medium; and (4) reduced both biofilm formation and pyoverdine production by P. aeruginosa onto endotracheal tubes, as assessed by a new in vitro model closely mimicking clinical settings. Taken together, our results indicate that, besides inhibiting ß-lactamase, SM23 can also act as powerful inhibitor of P. aeruginosa biofilm, suggesting that it may have a potential application in the prevention and treatment of biofilm-associated P. aeruginosa infections.

14.
Dent Mater J ; 38(4): 591-603, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31257304

RESUMO

Endodontic biofilm is a microbial community, enclosed in a polymeric matrix of polysaccharide origin where are found pathogens, like bacteria and opportunistic fungi responsible for various endodontic pathologies. As clinical importance is the fact, that biofilm is extremely resistant to common intracanal irrigants, antimicrobial drugs and host immune responses. The aim of this study was to evaluate the in vitro efficacy of a Cu/CaOH2-based endodontic paste, against bacteria and fungi, such as Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. We found that such compound significantly reduced microbial replication time and cell growth. Moreover, biofilm formation and persistence were also affected; treated biofilms showed both a reduced number of cells and levels of released pyoverdine. This study provides the first evidence on effectiveness of this endodontic compound against microbial biofilms. Given its wide range of action, its use in prevention and treatment of the main oral biofilm-associated infections will be discussed.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Biofilmes , Cálcio , Hidróxido de Cálcio , Candida albicans , Cobre , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
15.
Front Microbiol ; 10: 1469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354640

RESUMO

Oropharyngeal candidiasis is a common opportunistic mucosal infection of the oral cavity, mainly caused by an overgrowth of Candida albicans. This infection can inhibit nutritional intakes and strongly affect quality of life. To date, standard therapeutic strategies involving the administration of antifungal drugs can bring several side effects, not least the emergence of drug-resistant strains. The purpose of this study is to investigate the effectiveness of Saccharomyces cerevisiae CNCM I-3856 (live or inactivated cells) against oropharyngeal candidiasis. Our results show that administration of S. cerevisiae CNCM I-3856 (live or inactivated cells) in the oral cavity of C57BL/6J mice resulted in a protective effect against oropharyngeal candidiasis. The strongest effect was obtained with live S. cerevisiae CNCM I-3856. This was related to: (1) a decrease in C. albicans load in the oral cavity, esophagus, stomach, and duodenum; (2) an early resolution of inflammatory process in the tongue; (3) a marked reduction in C. albicans virulence factors; and (4) a consistent increase in neutrophil antimicrobial capacity. These findings suggest that S. cerevisiae products are potentially beneficial in the treatment of oropharyngeal candidiasis.

16.
FEMS Yeast Res ; 19(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689830

RESUMO

Candida glabrata is a second most common human opportunistic pathogen which causes superficial but also life-threatening systemic candidosis. According to the localisation of mannans and mannoproteins in the outermost layer of the cell wall, mannan detection could be one of the first steps in the cell recognition of Candida cells by the host innate immune system. Mannans from the cell wall provide important immunomodulatory activities, comprising stimulation of cytokine production, induction of dendritic cells (DCs) maturation and T-cell immunity. The model of DCs represents a promising tool to study immunomodulatory interventions throughout the vaccine development. Activated DCs induce, activate and polarise T-cell responses by expression of distinct maturation markers and cytokines regulating the adaptive immune responses. In addition, they are uniquely adept at decoding the fungus-associated information and translate it in qualitatively different T helper responses. We find out, that C. glabrata mannan is able to induce proliferation of splenocytes and to increase the production of TNF-α and IL-4. Next, increased the expression of co-stimulatory molecules CD80 and CD86 and the proportion of CD4+CD25+ and CD4+CD28+ T cells during in vitro stimulation of splenocytes. Reported results provide C. glabrata mannan capability to modulate cytokine production, DCs activation and antigen presentation activity, influencing T-cell phenotype in response to stimulation.


Assuntos
Candida glabrata/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Imunidade Inata , Fatores Imunológicos/metabolismo , Mananas/metabolismo , Linfócitos T/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Camundongos
17.
J Leukoc Biol ; 105(1): 187-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30371949

RESUMO

Glucocorticoid-induced leucine zipper (GILZ) exerts anti-inflammatory effects on the immune cells. However, less is known about GILZ function in neutrophils. We aimed to define the specific role of GILZ in basal neutrophil activity during an inflammatory response. GILZ knockdown resulted in a persistent activation state of neutrophils, as evidenced by increased phagocytosis, killing activity, and oxidative burst in GILZ-knockout (KO) neutrophils. This enhanced response caused severe disease in a dinitrobenzene sulfonic acid (DNBS)-induced colitis model, where GILZ-KO mice had prominent granulocytic infiltrate and excessive inflammatory state. We used a Candida albicans intraperitoneal infection model to unravel the intracellular pathways affected by GILZ expression in activated neutrophils. GILZ-KO neutrophils had stronger ability to clear the infectious agent than the wild-type (WT) neutrophils, and there was more activation of the NOX2 (NADPH oxidase 2) and p47phox proteins, which are directly involved in oxidative burst. Similarly, the MAPK pathway components, that is, ERK and p38, which are involved in the oxidative burst pathway, were highly phosphorylated in GILZ-KO neutrophils. Evaluation of GILZ expression kinetics during C. albicans infection revealed down-regulation that correlated inversely with the state of neutrophil activation, which was evaluated as oxidative burst. Overall, our findings define GILZ as a regulator of neutrophil functions, as its expression contributes to limiting neutrophil activation by reducing the activation of the signaling pathways that control the basal neutrophil functions. Controlling GILZ expression could help regulate a continuous inflammatory state that can result in chronic inflammatory and autoimmune diseases.


Assuntos
Sistema de Sinalização das MAP Quinases , Ativação de Neutrófilo , Fatores de Transcrição/metabolismo , Animais , Candida albicans/fisiologia , Candidíase/complicações , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/patologia , Colite/complicações , Colite/imunologia , Colite/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Explosão Respiratória
18.
PLoS One ; 13(11): e0207262, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30439994

RESUMO

Oral microbiota consists of hundreds of different species of bacteria, fungi, protozoa and archaea, important for oral health. Oral mycoses, mostly affecting mucosae, are mainly caused by the opportunistic pathogen Candida albicans. They become relevant in denture-wearers elderly people, in diabetic patients, and in immunocompromised individuals. Differently, bacteria are responsible for other pathologies, such as dental caries, gingivitis and periodontitis, which affect even immune-competent individuals. An appropriate oral hygiene can avoid (or at least ameliorate) such pathologies: the regular and correct use of toothbrush, toothpaste and mouthwash helps prevent oral infections. Interestingly, little or no information is available on the effects (if any) of mouthwashes on the composition of oral microbiota in healthy individuals. Therefore, by means of in vitro models, we assessed the effects of alcohol-free commercial mouthwashes, with different composition (4 with chlorhexidine digluconate, 1 with fluoride, 1 with essential oils, 1 with cetylpyridinium chloride and 1 with triclosan), on several virulence traits of C. albicans, and a group of viridans streptococci, commonly colonizing the oral cavity. For the study here described, a reference strain of C. albicans and of streptococci isolates from pharyngeal swabs were used. Chlorhexidine digluconate- and cetylpyridinium chloride-containing mouthwashes were the most effective in impairing C. albicans capacity to adhere to both abiotic and biotic surfaces, to elicit proinflammatory cytokine secretion by oral epithelial cells and to escape intracellular killing by phagocytes. In addition, these same mouthwashes were effective in impairing biofilm formation by a group of viridans streptococci that, notoriously, cooperate with the cariogenic S. mutans, facilitating the establishment of biofilm by the latter. Differently, these mouthwashes were ineffective against other viridans streptococci that are natural competitors of S. mutans. Finally, by an in vitro model of mixed biofilm, we showed that mouthwashes-treated S. salivarius overall failed to impair C. albicans capacity to form a biofilm. In conclusion, the results described here suggest that chlorhexidine- and cetylpyridinium-containing mouthwashes may be effective in regulating microbial homeostasis of the oral cavity, by providing a positive balance for oral health. On the other side, chlorhexidine has several side effects that must be considered when prescribing mouthwashes containing this molecule.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Candida albicans/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Boca/efeitos dos fármacos , Antissépticos Bucais/administração & dosagem , Estreptococos Viridans/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/patogenicidade , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/microbiologia , Boca/microbiologia , Fagocitose/efeitos dos fármacos , Estreptococos Viridans/crescimento & desenvolvimento , Estreptococos Viridans/metabolismo , Estreptococos Viridans/patogenicidade , Virulência/efeitos dos fármacos
19.
BMC Microbiol ; 18(1): 84, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107778

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for both acute and chronic infections in humans. In particular, its ability to form biofilm, on biotic and abiotic surfaces, makes it particularly resistant to host's immune defenses and current antibiotic therapies as well. Innovative antimicrobial materials, like hydrogel, silver salts or nanoparticles have been used to cover new generation catheters with promising results. Nevertheless, biofilm remains a major health problem. For instance, biofilm produced onto endotracheal tubes (ETT) of ventilated patients plays a relevant role in the onset of ventilation-associated pneumonia. Most of our knowledge on Pseudomonas aeruginosa biofilm derives from in vitro studies carried out on abiotic surfaces, such as polystyrene microplates or plastic materials used for ETT manufacturing. However, these approaches often provide underestimated results since other parameters, in addition to bacterial features (i.e. shape and material composition of ETT) might strongly influence biofilm formation. RESULTS: We used an already established biofilm development assay on medically-relevant foreign devices (CVC catheters) by a stably transformed bioluminescent (BLI)-Pseudomonas aeruginosa strain, in order to follow up biofilm formation on ETT by bioluminescence detection. Our results demonstrated that it is possible: i) to monitor BLI-Pseudomonas aeruginosa biofilm development on ETT pieces in real-time, ii) to evaluate the three-dimensional structure of biofilm directly on ETT, iii) to assess metabolic behavior and the production of microbial virulence traits of bacteria embedded on ETT-biofilm. CONCLUSIONS: Overall, we were able to standardize a rapid and easy-to-perform in vitro model for real-time monitoring Pseudomonas aeruginosa biofilm formation directly onto ETT pieces, taking into account not only microbial factors, but also ETT shape and material. Our study provides a rapid method for future screening and validation of novel antimicrobial drugs as well as for the evaluation of novel biomaterials employed in the production of new classes of ETT.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cateteres/microbiologia , Intubação Intratraqueal/instrumentação , Pseudomonas aeruginosa/metabolismo , Anti-Infecciosos , Contaminação de Equipamentos , Técnicas In Vitro/métodos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Fatores de Tempo , Virulência/genética
20.
PLoS One ; 13(7): e0201436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30063729

RESUMO

Vaginal candidiasis is a common disorder in women of childbearing age, caused primarily by the dimorphic fungus Candida albicans. Since C. albicans is a normal commensal of the vaginal mucosa, a long-standing question is how the fungus switches from being a harmless commensal to a virulent pathogen. Work with human subjects and in mouse disease models suggests that host inflammatory processes drive the onset of symptomatic infection. Fungal cell wall molecules can induce inflammation through activation of epithelial and immune receptors that trigger pro-inflammatory cytokines and chemokines, but pathogenic fungi can evade recognition by masking these molecules. Knowledge about which cell wall epitopes are available for immune recognition during human infection could implicate specific ligands and receptors in the symptoms of vaginal candidiasis. To address this important gap, we directly probed the surface of fungi present in fresh vaginal samples obtained both from women with symptomatic Candida vaginitis and from women that are colonized but asymptomatic. We find that the pro-inflammatory cell wall polysaccharide ß-glucan is largely masked from immune recognition, especially on yeast. It is only exposed on a small percentage of hyphal cells, where it tends to co-localize with enhanced levels of chitin. Enhanced ß-glucan availability is only found in symptomatic patients with strong neutrophil infiltration, implicating neutrophils as a possible driver of these cell wall changes. This is especially interesting because neutrophils were recently shown to be necessary and sufficient to provoke enhanced ß-glucan exposure in C. albicans, accompanied by elevated immune responses. Taken together, our data suggest that the architecture of C. albicans cell wall can be altered by environmental stress during vaginal candidiasis.


Assuntos
Candida albicans/imunologia , Candidíase Vulvovaginal/imunologia , Epitopos/imunologia , Polissacarídeos Fúngicos/imunologia , Hifas/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Adulto , Candida albicans/patogenicidade , Candidíase Vulvovaginal/patologia , Feminino , Humanos , Hifas/patogenicidade , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...